K9AXN Logic script segment 1968:

Calculating radiation Q for 1.5λ center fed resonant dipole in free space and ignoring wire resistance:

Calculate the number of radians from source to end and return to source for each .75 λ pole. (3.14159265359 • 3 = 9.424777961 = 9.424777961) Rad

 $(.9739502703^{-9.424777961} = .7797613769)$ 77.97613769% of the voltage will return to the source to add to the source power.

(1 - .7797613769 = .2202386231) 22.02386231% of the voltage and current will be lost to radiation.

 $(1 \div .2202386231 = 4.540529658) =$ the radiation Q. The radiation Q is the only metric for radiation. The fictitious radiation resistance is calculated by dividing the Z0, or surge resistance of the media, by the radiation Q.

Radiation Q does not care about the diameter of the wire, it cares only for the angular acceleration experienced as a traveling wave moves through time. It is expressed in radians because the force (Radius) will be equal to the angular acceleration (Magnetic curl), much the same as a satellite in orbit. The force of gravity equals the effect of angular acceleration attempting to move in the opposite direction.

Now, there are some facts that will be controversial but easy to prove in multiple ways.

Calculate for a #12 wire: 408r ÷ 3.542455564 = 115.174345r.

The #36 wire: (157.48" ÷ .005" = 31496) (Ln 31496 = 10.35761583) (10.35761583 - .75 = 9.607615833) (9.607615833 • 59.95849161 = 576r) (576 ÷ 3.542455564 = <mark>163</mark>r)